The Airplace Indoor Positioning System

C. Laoudias1, G. Constantinou2, M. Constantinides2, S. Nicolaou2, D. Zeinalipour2 and C. G. Panayiotou1

1KIOS Research Center for Intelligent Systems and Networks
Department of Electrical and Computer Engineering, University of Cyprus
2Department of Computer Science, University of Cyprus
WiFi RSS Fingerprinting

Where am I?
Fingerprint-based Positioning

- **Offline phase**: Build RSS radio map
 - n APs deployed in the area
 - Fingerprints
 $$ r_i = [r_{i1}, \ldots, r_{in}]^T $$
 - Averaging
 $$ \bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m) $$

- **Online phase**: Positioning
 - Fingerprint
 $$ s = [s_1, \ldots, s_n]^T $$ is observed
 - Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map
- n APs deployed in the area
- Fingerprints
 \[r_i = [r_{i1}, \ldots, r_{in}]^T \]
- Averaging
 \[\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m) \]

Online phase: Positioning
- Fingerprint
 \[s = [s_1, \ldots, s_n]^T \] is observed
- Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map

- n APs deployed in the area
- Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
- Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$

Online phase: Positioning

- Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
- Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

- **Offline phase:** Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$

- **Online phase:** Positioning
 - Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
 - Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

- **Offline phase:** Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$

- **Online phase:** Positioning
 - Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
 - Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map
- n APs deployed in the area
- Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
- Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$

Online phase: Positioning
- Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
- Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map
- n APs deployed in the area
- Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
- Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$

Online phase: Positioning
- Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
- Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map
- n APs deployed in the area
- Fingerprints
 \[r_i = [r_{i1}, \ldots, r_{in}]^T \]
- Averaging
 \[\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m) \]

Online phase: Positioning
- Fingerprint
 \[s = [s_1, \ldots, s_n]^T \] is observed
- Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

- **Offline phase:** Build RSS radio map
 - n APs deployed in the area
 - Fingerprints $r_i = [r_{i1}, \ldots, r_{in}]^T$
 - Averaging $\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m)$

- **Online phase:** Positioning
 - Fingerprint $s = [s_1, \ldots, s_n]^T$ is observed
 - Obtain an estimate $\hat{\ell}$ using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map

- \(n \) APs deployed in the area
- Fingerprints
 \[r_i = [r_{i1}, \ldots, r_{in}]^T \]
- Averaging
 \[\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m) \]

Online phase: Positioning

- Fingerprint
 \[s = [s_1, \ldots, s_n]^T \] is observed
- Obtain an estimate \(\hat{\ell} \) using the radio map
Fingerprint-based Positioning

Offline phase: Build RSS radio map
- n APs deployed in the area
- Fingerprints
 \[r_i = [r_{i1}, \ldots, r_{in}]^T \]
- Averaging
 \[\bar{r}_i = \frac{1}{M} \sum_{m=1}^{M} r_i(m) \]

Online phase: Positioning
- Fingerprint
 \[s = [s_1, \ldots, s_n]^T \] is observed
- Obtain an estimate $\hat{\ell}$ using the radio map
Airplace System

Terminal-based Infrastructure-assisted Architecture

- **Low Communication Overhead**: Avoids uploading the observed RSS fingerprint to the positioning server
- **User Privacy & Security**: Location is estimated by the user and not by the positioning server
RSS Logger Application

Facilitates collection and storage of the RSS data on the device.

- Developed around the Android RSS API for scanning and recording data samples in specific locations
- User-defined number of samples
- Users can contribute their data to Airplace for constructing and updating the radiomap through crowdsourcing
Distribution Server

Constructs the RSS radiomap and disseminates it to the requesting clients.

- Listens for connections from clients, that either contribute their RSS data or request the radiomap for positioning
- Parses all available RSS log files and merges them in a single compact radiomap file
- Fine tunes algorithm-specific parameters and stores them in a configuration file which is distributed with the radiomap
Find Me Application

Implements the positioning client running on the users device.

- Connects to the server for downloading the radiomap and algorithm-specific parameters
- Algorithm bank with several algorithms (KNN, MMSE, etc.)
- Dual Operation Mode: **Online** (real-time positioning) or **Offline** (evaluation of algorithms)
Thank you for your attention

Questions?

Contact
Christos Laoudias
KIOS Research Center for Intelligent Systems and Networks
Department of Electrical & Computer Engineering
University of Cyprus
Email: laoudias@ucy.ac.cy

www2.ucy.ac.cy/~laoudias/pages/platform.html
Deterministic Approach

Deterministic positioning methods

Location is estimated as a convex combination of the reference locations ℓ_i by using the K locations with the shortest distances between \bar{r}_i and s.

$$\hat{\ell} = \sum_{i=1}^{K} \frac{w_i}{\sum_{j=1}^{K} w_j} \ell'_i$$

where $\{\ell'_1, \ldots, \ell'_l\}$ denotes the ordering of reference locations with respect to increasing distance $\|\bar{r}_i - s\|$.

K-Nearest Neighbor (KNN) variants

- **NN**: $K = 1$
- **KNN**: $K \neq 1$, $w_i = \frac{1}{K}$
- **Weighted KNN**: $K \neq 1$, $w_i = \frac{1}{\|\bar{r}_i - s\|}$
Probabilistic Approach

Probabilistic positioning methods

Location ℓ is treated as a random vector that can be estimated by calculating the conditional probabilities $p(\ell_i|s)$ (posterior) given s.

\[
p(\ell_i|s) = \frac{p(s|\ell_i)p(\ell_i)}{p(s)} = \frac{p(s|\ell_i)p(\ell_i)}{\sum_{i=1}^{l} p(s|\ell_i)p(\ell_i)}
\]

\[
p(s|\ell_i) = \prod_{j=1}^{n} p(s_j|\ell_i)
\]

$p(s|\ell_i)$ is the likelihood, $p(\ell_i)$ is the prior and $p(s)$ is a constant.

Positioning variants

- Maximum Likelihood: $\hat{\ell} = \arg \max_{\ell_i} p(s|\ell_i)$
- Maximum A Posteriori: $\hat{\ell} = \arg \max_{\ell_i} p(s|\ell_i)p(\ell_i)$
- Minimum Mean Square Error: $\hat{\ell} = E[\ell|s] = \sum_{i=1}^{l} \ell_ip(\ell_i|s)$
Radial Basis Function Networks

\[
\ell(s) = \sum_{i=1}^{C} w_i u(s, c_i)
\]

\[
u(s, c_i) = \frac{\varphi(\|s - c_i\|)}{\sum_{j=1}^{C} \varphi(\|s - c_j\|)}
\]

- \(C\): number of centers
- \(c_i\): \(n\)-dimensional center
- \(\varphi(\|s - c\|) = \exp\left(-\frac{1}{2}\|s - c\|^2\right)\)
- \(w_i\): 2-dimensional weights