Approaches to Molecular Magnetic Materials from the Use of Cyanate Groups in Higher Oxidation State Metal Cluster Chemistry: Mn$_{14}$ and Mn$_{16}$


Keywords: Cluster compounds / Cyanates / Manganese / N,O ligands / Single-molecule magnets

The initial employment of cyanato groups in higher oxidation state manganese cluster chemistry, in conjunction with the gem-diolate form of di-2-pyridylketone or 2,6-diacetylpyridine dioxime chelate ligands, has afforded structurally interesting Mn$^{II/III}_{14}$ and Mn$^{II/III/IV}_{16}$ clusters, respectively. In both complexes, the end-on bridging cyanato groups show an obvious preference in binding through their O atom, a significantly different ligation than that for the homoatomic-type N$_3^-$ ligand. The Mn$_{14}$ compound shows entirely visible out-of-phase signals below 5 K and large hysteresis loops below 2 K.

Introduction

The fascination of inorganic chemists with manganese coordination chemistry has been primarily driven by its relevance to bioinorganic chemistry and single-molecule magnetism. Single-molecule magnets (SMMs) have a significant energy barrier to magnetization relaxation, and the upper limit to the barrier ($U$) is given by $S(S^2-1/4)$ for integer and half-integer spin, respectively.[1] Thus, SMMs represent a molecular route to nanoscale magnetism, with potential applications in information storage[2] and spintronics[3] at the molecular level, and use as quantum bits in quantum computation.[4]

The employment of azido groups in higher oxidation state Mn cluster chemistry has recently renewed the interest of coordination chemists and magnetochemists.[5] This was basically because of the coordination flexibility of the N$_3^-$ ions and the ferromagnetic coupling they promote when they bridge in the 1,1-fashion (end-on). The combination of these two characteristics has led to a large number of new Mn$^{III}$-containing clusters with nuclearities of up to {Mn$^{III}_{32}$}[6] and $S$ values as large as 83/2,[7] 74/2,[8] and 51/2.[9]

The use of OCN$^-$ groups in divalent 3d-metal cluster chemistry has been extensively investigated. However, the role of OCN$^-$ never had the impact of N$_3^-$, and when they were employed in M$_2^+$ chemistry, it was mainly for magnetostructural reasons, i.e. for comparison of the strength of the magnetic exchange interactions between structurally similar M$_2^+/N_3^-$ and M$_2^+/OCN^-$ complexes.[10–12] The highest nuclearity M$_{2+}$/OCN$^-$ complex to date is a Fe$^{II}_{9}$ cluster,[11a] which is isomorphous with the Co$^{II}_{9}$[11b] and Ni$^{II}_{9}$[11c] analogues.

There has been little use of OCN$^-$ in higher oxidation state metal chemistry, and particularly in Mn$^{III}$ coordination chemistry.[8,12] Reasons for that are probably the assumed structural similarities of the many currently known Mn$^{III}$/N$_3^-$ clusters with the corresponding Mn$^{III}$/OCN$^-$ species,[18,12a] as well as the assumed magnetic similarities between the two families of complexes that might not lead to any new, significant magnetic results. Hendrickson and coworkers have recently reported two isostructural Mn$^{II}_{3}$M$n^{III}_{n}$ clusters containing either N$_3^-$ or OCN$^-$ groups,[12b] the Mn$_{9}$/N$_3^-$ compound is ferromagnetically-coupled, whereas the isostructural Mn$_{9}$/OCN$^-$ compound exhibits an antiferromagnetic behavior. However, in the present work we show...
for the first time that heteroatomic-type pseudohalides, such as OCN–, can be employed as structure-directing ligands and ferromagnetic couplers in higher oxidation state Mn cluster chemistry, which lead to molecular species with different structural motifs and physical properties than those obtained from the corresponding reactions with N3–.

Previously, we have shown that reaction of azide and the gem-diolate of di-2-pyridylketone (dpkd2–, Figure S1) in Mn(MeCO3)2 chemistry yields the dumbbell-shaped cluster [Mn9O6(OH)5(N3)2(dpkd)2(dapdo)2(dapdoH)2(H2O)2]14+ while a similar reaction but with the ligand 2,6-diacytlypyridine dioxide (dapdoH2, Figure S1) in place of dpk, in the absence of MeCO2, gives [Mn10O4(OH)5(N3)2(dapdo)2(dapdoH)2(H2O)2]14+ We now report that the analogous 1:2:1:1:1 and 2:1:2:1 reactions between Mn(ClO4)2/NaO2CMe/dpk/NEt3/NaOCN in DMF afford the new compounds [Mn14O4(OH)2(N3)12(O2CMe)6(dpkd)14(DMF)4],13 while a reaction similar to the Scheme 1 described for the new compounds [Mn16O4(OH)2(N3)12(O2CMe)6(dpkd)14(DMF)4]13,14 with peripheral ligation about the core is further provided by two monodentate Cl– atoms and four terminal DMF molecules. The core of 2 can be conveniently dissected into seven layers of four types with an ABCDCBA arrangement (Figure 2, bottom): MnII monomeric layer A is the “lid” (or “base”) of the Mn16 “tube”, linked to layer B, which has an unusual oxidation state description, MnII2MnIIIIV “butterfly”; layer C is a “node”-like MnIII monomer, which acts as the connector between layers AB and D; the latter, central layer D is again a “butterfly”-type unit but with a MnII2MnIV2 description. Each layer is held together and linked to neighboring layers by a combination of oxido, alkoxido, oximato, and end-on cyanato ligands.

In both 1 and 2, the end-on bridging cyanato groups show an obvious preference in binding through their O atom (hard donor atom), a significantly different ligation than that for the homoatomic-type N3– ligand. Indeed, 1 and 2 are the first OCN–based clusters in which the metal centers are O-bridged, which opens a new window in structural 3d-metal cluster chemistry.

Solid-state dc (direct current) magnetic susceptibility (χM) data were collected on 1·DMF and 2 in a 1 kG (0.1 T) field in the 5.0–300 K range. The data are plotted as χM T vs. T in Figure S4, and both 1·DMF and 2 clearly have relatively large ground-state spin (S) values. The χM T value

Results and Discussion

The cation of 117 consists of a mixed-valence (MnII, MnIII)2 cluster (Figure S1, top), reminiscent of half of the azido-bridged (Mn36) dumbbell-shaped cluster. The Mn14 unit comprises a MnII4MnIII4 rodlike subunit attached on either side to two symmetry-related [MnII(MnIII)2(μ-OR)3]3+ trimuclear subunits. The 14 Mn atoms are bridged by a combination of two μ2-O2–, two μ2-O2–, two μ2-OR–, two η1:η1 (end-on) or 2.20 (Harris notation) OCN–, and eight dpkd2– ligands (Scheme 1). Complex 1 thus contains an overall [Mn14(d4μ4-O)2(μ4-O)2(μ3-OCN)3(μ2-OR)2(μ-OR)10]12+ core (Figure S1, bottom), with peripheral ligation provided by two η1:η1:μ or 2.11 (Harris notation) MeCO2– groups, and four OCN–, two DMF, and four H2O terminal ligands. Bond-valence sum (BVS) calculations19,20 confirm the MnII4MnIII4 mixed-valent description for 1, where Mn(1,2,7) are the MnIII atoms. All octahedral MnIII atoms, Mn(3,4,5,6), exhibit Jahn–Teller (JT) axial elongations; the eight JT axes are essentially parallel to each other.19,20 Mn2 and Mn7 are seven- and five-coordinate with distorted pentagonal-bipiramidal and square-pyramidal geometries (τ = 0.05),21 while Mn1 is six-coordinate with a distorted octahedral geometry.

The structure of 217 consists of a mixed-valence (MnII, MnIII, MnIV)4 cage (Figure S2, top) with a “tubular”-like topology. The six μ2-O2–, two μ2-O2–, four μ2-OR–, and four η1:η1 (end-on) or 2.20 (Harris notation) OCN– core enhance the core together, as well as six η1:η1:η1:η1:η1:μ (or 3.111118) and two η1:η1:η1:η1:η1:μ (or 3.1101118) chelating/bridging dapdo2– and L3– groups, respectively (Scheme 1). Peripheral
for I·DMF decreases from 38.71 cm$^3$ K mol$^{-1}$ at 300 K to 26.65 cm$^3$ K mol$^{-1}$ at 20.0 K, and then increases to 36.73 cm$^3$ K mol$^{-1}$ at 5.0 K. For 2, $\chi_M T$ steadily decreases from 30.94 cm$^3$ K mol$^{-1}$ at 300 K to a minimum of 22.39 cm$^3$ K mol$^{-1}$ at 35.0 K, and then increases sharply to 25.61 cm$^3$ K mol$^{-1}$ at 6.5 K, before slightly dropping to 25.50 cm$^3$ K mol$^{-1}$ at 5.0 K. The shape of both curves suggests that both antiferro- and ferromagnetic exchange interactions are likely present within I·DMF and 2.

Attempted fits of the magnetization data collected at various fields and at low temperatures, and assuming that only the ground state is populated, were poor, which suggests population of low-lying excited states, as expected for such high-nuclearity complexes. As described elsewhere,[13–16] an alternative determination of $S$ can be reached from ac (alternating current) susceptibility measurements; this precludes complications from a dc field and/or low-lying excited states. For I·DMF and 2, the in-phase ($\chi_M H$) ac signals, shown as $\chi_M H$ in Figures 3 and S5, respectively, are very temperature dependent in the 4–15 K region, which confirms the conclusion from the dc studies of low-lying excited states. Extrapolation of the data above 15 K down to 4 K gives $\approx$ 44 and 24 cm$^3$ K mol$^{-1}$ for I·DMF and 2, which indicates $S = 9$ and 7 ground states, respectively (with a g value slightly less than 2). At lower temperatures, only I·DMF displays a frequency-dependent decrease in $\chi_M H$ and concomitant appearance of entirely visible out-
of-phase $M'$ signals (Figure 3, bottom), a very rare situation for a high-nuclearity Mn$^{IV/II}$ cluster and indicative of a significant barrier to magnetization relaxation. Indeed, an Arrhenius plot constructed from the ac $\chi M'$ vs. $T$ data of Figure 3 (inset) gave $U_{\text{eff}} = 35$ K and $\tau_0 = 7.4 \times 10^{-12}$ s, where $\tau_0$ is the pre-exponential factor. A $U_{\text{eff}}$ value of 35 K is one of the highest observed for a Mn$^{IV/II}$ mixed-valent complex$^{[13,22]}$ still smaller than those for the Mn$_6$$^{[23]}$ and Mn$_{12}$$^{[24]}$ complexes.

The confirmation of SMM behavior for 1 was sought by magnetization vs. dc field scans on a single crystal of 1-solv by using an array of micro-SQUIDs. These scans exhibited magnetization hysteresis loops below 2 K. The loops exhibit coercivities that increase with decreasing temperature (Figure 4) and increasing field sweep rate, but do not show the steps characteristic of quantum tunneling of magnetization as a result of step-broadening effects from low-lying excited states and distributions of local environments owing to solvent disorder$^{[8,9,16]}$.

Figure 4. Magnetization ($M$) vs. applied dc field ($H$) hysteresis loops for single crystals of 1-solv at the indicated temperatures. The magnetization is normalized to its saturation value ($M_s$).

Conclusions

We have reported the first results from the use of cyanato groups in higher oxidation state metal cluster chemistry, which clearly support our initial hypothesis that this area of research will lead to chemically, structurally, and magnetically new findings, distinctly different than those observed from the use of the consanguineous azido ligands.

Experimental Section

**Synthesis of 1:** Solid Mn(ClO$_4$)$_2$·6H$_2$O (0.36 g, 1.0 mmol), NaO$_2$CMe·3H$_2$O (0.27 g, 2.0 mmol), and NaOCN (0.07 g, 1.0 mmol) were added to a stirred, pale yellow solution of dpk (0.18 g, 1.0 mmol) and NEt$_3$ (0.14 mL, 1.0 mmol) in MeCN/DMF (25 mL, 4:1 v/v). The resulting orange solution was stirred for 24 h, during which time all the solids dissolved and the color of the solution changed to dark brown. The solution was filtered, and the filtrate was left undisturbed at ambient temperature. After 10 d, X-ray quality dark red plate-like crystals of 1·DMF appeared and were collected by filtration, washed with MeCN (2× 5 mL) and Et$_2$O (4× 5 mL), and dried under vacuum. Yield: 60% (0.13 g), C$_{10}$H$_{10}$Mn$_4$N$_{32}$O$_{41}$ (1·DMF): calcld. C 40.62, H 3.28, N 11.38. Selected IR data (KBr): $\nu \approx 3045$ (m), 2972 (s), 2355 (w), 1650 (s), 1586 (m), 1508 (m), 1474 (w), 1436 (s), 1320 (s), 1214 (s), 1150 (m), 1116 (m), 1090 (m), 1076 (m), 1044 (m), 1016 (s), 958 (w), 822 (w), 780 (m), 758 (m), 680 (m), 654 (m), 636 (s), 554 (m), 414 (w) cm$^{-1}$.

**Synthesis of 2:** Solid MnCl$_2$·4H$_2$O (0.20 g, 1.0 mmol) and NaOCN (0.05 g, 0.5 mmol) were added to a stirred, pale yellow solution of dapdoH$_2$ (0.10 g, 0.5 mmol) and NaCl (0.36 g, 1.0 mmol) in MeCN/DMF (25 mL, 4:1 v/v). The resulting red solution was stirred for 45 min, during which time all the solids dissolved and the color of the solution changed to dark brown. The solution was filtered, and the filtrate was left undisturbed at ambient temperature. After 3 d, X-ray quality, dark brown prismatic crystals of 2·(x-solv) appeared and were collected by filtration, washed with MeCN (2× 5 mL) and Et$_2$O (4× 5 mL), and dried under vacuum. Yield: 45% (0.09 g). C$_{88}$H$_{98}$Mn$_{16}$Cl$_2$N$_{32}$O$_{40}$ (1·DMF): calcd. C 40.60, H 3.25, N 11.38. Selected IR data (KBr): $\nu$ ~ 3440 (mb), 2182 (vs), 1655 (m), 1594 (s), 1534 (m), 1450 (m), 1390 (s), 1268 (w), 1166 (w), 1128 (m), 1050 (vs), 802 (m), 742 (w), 690 (m), 668 (mb), 624 (m), 564 (m), 484 (m), 425 (w) cm$^{-1}$.

**Safety Note:** Perchlorate salts are potentially explosive; such compounds should be synthesized and used in small quantities, and treated with utmost care at all times.

**Supporting Information** (see footnote on the first page of this article): Various structural and magnetism figures for complexes 1 and 2 are presented.

**Acknowledgments**

This work was supported by the Ontario Trillium Scholarship (to D. I. A., Th. C. S.), the Fundação para a Ciência e a Tecnologia (Pest-C/QUI/B0006/2011 to L. C.-S.), the Cyprus Research Promotion Foundation Grant “ANABA0M12H/11A10/038012” (to A. J. T.), the ERC Advanced Grant MolNanoSpin No. 226558 (to W. Wernsdorfer), and the National Science Foundation (Grant DMR-1213030 to G. Christou).

---


[17] a) Crystal structure data for 1-xDMF·yH2O: C20H20Mn16Cl2N32O40, M = 6280.19, triclinic, space group P1, a = 16.1201(8) Å, b = 20.8879(6) Å, c = 22.0475(10) Å, α = 85.219(3)°, β = 70.039(4)°, γ = 82.447(3)°, V = 6911.3(5) Å3, Z = 1, ρcalcd = 1.509 gcm–3, T = 150(2) K, 101693 reflections collected, 13532 unique (Rint = 0.1364, using 13532 reflections with I > 2σ(I)). The calculated solvent-free reflection list was then used for the final structure refinement; b) CCDC-905468 and CCDC-905469 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/conts/retrieving.html.


[19] See the Supporting Information.


Received: January 23, 2013
Published Online: March 21, 2013